AMPA receptor binding cleft mutations that alter affinity, efficacy, and recovery from desensitization.
نویسندگان
چکیده
Glutamate binds to AMPA receptors within a deep cleft between two globular protein domains (domains 1 and 2). Once glutamate binds, the cleft closes, and agonist-bound structures of the isolated ligand binding core suggest that closure of the binding cleft is sufficiently complete that it essentially prevents ligand dissociation. There is also considerable evidence supporting the view that cleft closure is the initial conformational change that triggers receptor activation and desensitization, and it has been clearly demonstrated that there is a correlation between the degree of cleft closure and agonist efficacy. It is unknown, however, whether the stability of binding cleft closure also influences receptor-channel properties. The crystallographic structures indicate that closed-cleft conformations are stabilized by the formation of hydrogen bonds that involve amino acid side chains of residues in domains 1 and 2. We show here that mutations that disrupt one such cross-cleft hydrogen bond (in the AMPA receptor subunit GluR2) decrease both agonist affinity and efficacy. The same mutations also hasten recovery from desensitization. We conclude that the stability of binding cleft closure has a significant impact on AMPA receptor function and is a major determinant of the apparent affinity of agonists. The results suggest that the stability of cleft closure has been tuned so that glutamate dissociates as rapidly as possible yet remains a full agonist.
منابع مشابه
Interdomain interactions in AMPA and kainate receptors regulate affinity for glutamate.
Ionotropic glutamate receptors perform diverse functions in the nervous system. As a result, multiple receptor subtypes have evolved with different kinetics, ion permeability, expression patterns, and regulation by second messengers. Kainate receptors show slower recovery from desensitization and have different affinities for agonists than AMPA receptors. Based on analysis of ligand binding dom...
متن کاملNot all desensitizations are created equal: physiological evidence that AMPA receptor desensitization differs for kainate and glutamate.
AMPA receptor-mediated responses to the agonist kainate differ from those of glutamate in two important respects. Glutamate is a full agonist that elicits strongly desensitizing responses, whereas kainate is a partial agonist with responses that are often described as weakly desensitizing or non-desensitizing. The efficacy of kainate relative to glutamate has previously been shown to be increas...
متن کاملCorrelating efficacy and desensitization with GluK2 ligand-binding domain movements
Gating of AMPA- and kainate-selective ionotropic glutamate receptors can be defined in terms of ligand affinity, efficacy and the rate and extent of desensitization. Crucial insights into all three elements have come from structural studies of the ligand-binding domain (LBD). In particular, binding-cleft closure is associated with efficacy, whereas dissociation of the dimer formed by neighbouri...
متن کاملCyclothiazide decreases [3H]AMPA binding to rat brain membranes: evidence that AMPA receptor desensitization increases agonist affinity.
The effects of cyclothiazide, a drug which blocks AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor desensitization, were tested on binding of [3H]AMPA to rat brain membranes. Cyclothiazide reduced [3H]AMPA binding by lowering the apparent affinity of the AMPA receptor. The magnitude of the decrease was temperature dependent and greater for membrane-bound than for solubil...
متن کاملThe mechanism of action of aniracetam at synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors: indirect and direct effects on desensitization.
The mechanism of action of aniracetam on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors was examined in outside-out patches and at glutamatergic synapses in neurons of the chick cochlear nucleus. A combination of rapid-flow analysis, using glutamate as an agonist, and kinetic modeling indicated that aniracetam slows both the rate of channel closing, and the microscopi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 15 شماره
صفحات -
تاریخ انتشار 2005